MicroVAX/Bus Communication Testing Software for the Low Speed Wind Tunnel Data Acquisition System Craig D. Edwards DSTO-TN-0189 19990504 136 Approved for Public Release Distribution Unlimited ## MicroVAX/Bus Communication Testing Software for the Low Speed Wind Tunnel Data Acquisition System Craig D. Edwards # Air Operations Division Aeronautical and Maritime Research Laboratory **DSTO-TN-0189** #### **ABSTRACT** Software has been developed to test the communication between the MicroVAX computer and the bi-directional parallel data bus in the Low Speed Wind Tunnel (LSWT) data acquisition system. It enables reading any combination of data parameters from the bus for a user-defined number of iterations. An output file is created which contains the final values, average bus communication times associated with the read process and a statistical analysis of the recorded data. This report describes the operation of the software and presents results of tests performed on the existing data acquisition configuration. #### **RELEASE LIMITATION** Approved for public release ## Published by DSTO Aeronautical and Maritime Research Laboratory PO Box 4331 Melbourne Victoria 3001 Australia Telephone: (03) 9626 7000 Fax: (03) 9626 7999 © Commonwealth of Australia 1999 AR-010-843 February 1999 APPROVED FOR PUBLIC RELEASE ## MicroVAX/Bus Communication Testing Software for the Low Speed Wind Tunnel Data Acquisition System ## **Executive Summary** The existing Low Speed Wind Tunnel (LSWT) data acquisition software operates directly from a MicroVAX system using a bi-directional parallel communication bus designed at the Aeronautical and Maritime Research Laboratory (AMRL). This bus connects a range of instrumentation modules to the host computer. Previous and current wind tunnel tests indicate that this configuration may not be performing to its maximum potential. Software was developed for testing the MicroVAX/Bus communication to enable a greater understanding of the current capabilities with the view of improving the system. Communication times were recorded and the integrity of the data acquired from the modules was examined. Bus communication time was found to be relatively slow in some modules. Acquiring data from the inclinometer module was slow due to the checking of the conversion buffer. This was improved by modifying the inclinometer software to update its database continuously, thus eliminating the need for checking the conversion buffer prior to reading of parameters. A communication time totalling approximately 1.6 seconds was observed when acquiring data from the freestream parameter, inclinometer, actuator, turntable, strain gauge and auxiliary modules. This involved a request of 28 addresses corresponding to a bus communication time of approximately 0.06 seconds per address. Tests were performed with and without the tunnel running and negligible differences in communication times were observed. Frequent anomalies were evident in the data acquired from the freestream parameter module. When the tunnel was running at 60 m/s, more anomalies were observed than when the tunnel was not running and these may be caused by interference from the wind tunnel's AC drive motor. The other modules functioned at a satisfactory speed usually without any anomalies or poor data. It is recommended that bus communication, hardware set-up and the software in the freestream parameter module be investigated to determine the causes of the anomalies. Plans to improve the quality of data acquisition and communication are being developed, and these include connecting the instrumentation modules to the MicroVAX via a PC on which the software can be run and the processed experimental data displayed. In this scenario, the MicroVAX would be solely responsible for acquiring raw data from the slave instrumentation modules attached to the bus, and for passing the data to the PC. This would unclutter the operation of the MicroVAX and improve the speed and efficiency of data acquisition. ## Contents | 1. | INTRODUCTION | 1 | |-----|---|---| | | | - | | 2. | SOFTWARE DESCRIPTION AND USER INSTRUCTIONS | L | | 2.1 | Selection of Parameters | 1 | | 22 | Digio Message Assembly | Z | | 22 | Rus Communication and Data Acquisition | ∠ | | 2.4 | Statistical Analysis | 3 | | | | | | 3. | SOFTWARE TESTING AND ANALYSIS | 3 | | 31 | Definition of Parameters | 3 | | 3 2 | Bus Communication Times | 4 | | 23 | Effect on Bus Communication Times Due to the State of the Instrumentation | | | M | odules (ON/OFF) | 6 | | 3 4 | Anomalies and Accuracy of Data | O | | 3.5 | Corrective Actions Taken | 7 | | J.J | COLCULTO LAMOND LIMITARY | | | 4. | CONCLUSIONS AND RECOMMENDATIONS | 8 | ## 1. Introduction The existing Low Speed Wind Tunnel (LSWT) data acquisition software operates directly from the MicroVAX system using a bi-directional parallel communication bus designed at the Aeronautical and Maritime Research Laboratory (AMRL). This bus connects a range of instrumentation modules to the host computer. Previous and current wind tunnel tests indicate that this configuration may not be performing to its maximum potential. The development of software was proposed to assist in determining an optimum design. It was intended that bus communication would be tested to enable a greater understanding of the capabilities of the MicroVAX system. The timing of bus readings would be analysed, as would any data disturbances that may be associated with interactions between the acquisition modules of the existing system. This data shall assist in determining options for upgrading the present system. Future plans to improve the quality of data acquisition and communication involve connecting the instrumentation modules to the MicroVAX via a PC on which the software can be run and the processed experimental data displayed. In this scenario, the MicroVAX will be solely responsible for acquiring raw data from the slave instrumentation modules attached to the bus, and for passing the data to the PC. ## 2. Software Description and User Instructions The entire listing of the program in Fortran code is included in Appendix A of this document. The following is a description of the workings of the software and a definition of the variables that were used. The designed software consists of two components; the main executable program 'bus_read.for' and a subroutine 'conv.for' for the conversion of raw data into the appropriate format to provide realistic values. They run in conjunction with the existing data acquisition software 'digio_include.for', 'digiodef.h' and 'bus_addresses.for' and the function subprogram 'hextodec.for'. These files are required for the software being developed to work correctly. ### 2.1 Selection of Parameters When the executable program 'bus_read.exe' is initiated, a menu is displayed which lists the data parameters that can be obtained from the relevant modules via bus communication. The user is prompted to enter, in a continuous string (or separated by commas or spaces), the numbers corresponding to the desired parameters. This response determines the course of action for the remainder of the program. The user is also requested to enter the number of desired iterations, which represents the number of times the bus is interrogated with the selected variables. At present the parameters available for selection are: - freestream parameters (from the freestream parameters module) - 2) pitch angle (from the inclinometer module) - 3) roll angle (from the inclinometer module) - 4) yaw angle (from the model attitude module) - 5) actuator angles (from the actuator module) - 6) strain gauge values (from the AC strain gauge module) - 7) motor speed (from the auxiliary module) - 8) pitch, roll angles and calculated alpha, beta angles (from the sting column rig module) However, parameters associated with other configurations can easily be incorporated by simply adding the appropriate lines of code in an identical manner to the existing options. ## 2.2 Digio Message Assembly The software tests each character in the selection string, one at a time, for a match with one of the parameter read options. When a match is registered, the bus address indexes pertaining to the parameters to be read are inserted into the digio message (a character string). The start and end character positions in the digio message for each input are recorded incrementally to allow additional addresses to be appended. A counter also updates the total number of addresses in the completed digio message. The file 'bus_addresses.for' contains all the bus addresses and their definitions that currently exist in the LSWT data acquisition system. This process is repeated for each recognised character within the selection string. If no matches are found, no digio message is compiled and the remainder of the program is bypassed. Once the required addresses have been assembled, the digio message is completed by adding to the beginning, a priority index (usually 'H' - high), the requestor index, and the total number of addresses the message contains. Using the character string of the parameters selected, a header describing the parameters that will be read from the bus is compiled and written to a file. ## 2.3 Bus Communication and Data Acquisition Before the parameters are read from the bus, a command is sent which triggers all of the modules. If either the inclinometer module or strain gauge module is required, then the conversion buffers for these modules are checked. A series of built-in functions sends the digio message to the bus which then obtains the data to be read and places it in the array, <code>data_list()</code>. This bus communication time is then calculated using the system subroutine <code>secnds</code>. Following this process, the subroutine, conv.for, is called which converts the raw data obtained from the bus into engineering values.
The data may have to be converted from hex to decimal format and a scale factor introduced before a meaningful result can be observed. The final values are then written to the output file 'test.dat' beneath the appropriate headings determined previously. Bus communication time is also listed to indicate the speed with which the process was performed. According to the number of iterations specified by the user at the start, the same digio message is repeatedly sent to the bus to acquire data and output it in an identical manner. The average bus communication time for the sending of one digio message and the average time per address is then computed. ## 2.4 Statistical Analysis To determine the quality of data collected and the number of anomalies that exist, if any, a statistical analysis is then performed. A tolerance value is set for each column of data according to a typical magnitude. The columns are scanned to record the number of points that lie outside this tolerance band and an average is then calculated ignoring these detected anomalies. Another loop detects any points that deviate from this average by a chosen percentage margin. Both the numbers of anomalies and scattered data are then listed for each column at the base of the output file. NOTE: The statistical analysis provides interpretable data only if the parameters are read during a period of reasonably steady state when condition changes are minimal. ## 3. Software Testing and Analysis Tests were performed to investigate the timing of the bus communication for combinations of different modules in different situations. Times were recorded for cases in which modules were interrogated individually and then compared to the times obtained when reading from multiple modules via a single digio message. Times were also estimated for each address within each module read. It was assumed that this was equal to the total time divided by the number of address indexes in the digio message. The system response was examined for a number of different arrangements. Typical run configurations were chosen and the tests conducted incorporated only the relevant parameters required for that run. Any interactions that may have occurred among modules were identified by comparing the results obtained. The effects of having *all* modules switched on or only those modules required for the reading of particular parameters were considered. Differences, if any, due to whether or not the tunnel was actually operating, were also investigated. The following tables contain bus communication times for particular combinations of parameters and the different configurations as described above. Comparisons were made and graphs were created to illustrate these results. The numbers used to tabulate the data more conveniently, correspond to the relevant parameters as defined below. #### 3.1 Definition of Parameters - 1 = six freestream parameters (ten addresses from the freestream parameters module): - -tunnel test section static pressure (Pt) - -dynamic pressure (q) - -air speed (v) - -air temperature (t) - -Mach number (M) - -Reynolds number (Re) - 2 = pitch angle (from the inclinometer module) - 3 = roll angle (from the inclinometer module) - 4 = yaw angle (from the turntable module) - 5 = eight actuator angles (from the actuator module) - 6 = six strain gauge values (from the AC strain gauge module) - 7 = motor speed (from the auxiliary module) - 8 = pitch, roll angles and calculated alpha, beta (from the sting column rig module) ## 3.2 Bus Communication Times Table 1. Average bus communication times for selected parameters over 100 iterations with all modules on. | att notation on | | | | | | | | |-----------------|---|---------------|--------------|---------------|--|--|--| | | Average Bus Communication Times, ∆t (seconds) | | | | | | | | | | | el Idle | Tunnel | | | | | | | | | Running | | | | | Parameters | Number of | Average time | Average time | Average time | | | | | 1 44411.000=0 | Addresses | per iteration | per address | per iteration | | | | | 1 only | 10 | 0.574 | 0.057 | 0.579 | | | | | 2 only | 1 | 0.190 | 0.190 | 0.189 | | | | | 3 only | 1 | 0.190 | 0.190 | 0.188 | | | | | 4 only | 1 | 0.070 | 0.070 | 0.070 | | | | | 5 only | 8 | 0.421 | 0.053 | 0.422 | | | | | 6 only | 6 | 0.385 | 0.064 | 0.380 | | | | | 7 only | 1 | 0.070 | 0.070 | 0.069 | | | | | 8 only | 4 | 0.222 | 0.056 | 0.223 | | | | | 2,3 only | 2 | 0.240 | 0.120 | 0.250 | | | | | 1,2 | 11 | 0.738 | 0.067 | 0.740 | | | | | 1,2,3 | 12 | 0.792 | 0.066 | 0.794 | | | | | 1,2,3,4 | 13 | 0.846 | 0.065 | 0.847 | | | | | 1,2,3,4,5 | 21 | 1.251 | 0.060 | 1.254 | | | | | 1,2,3,4,5,6 | 27 | 1.545 | 0.057 | 1.545 | | | | | 1,2,3,4,5,6,7 | 28 | 1.598 | 0.057 | 1.598 | | | | | 1,2,0,4,0,0, | 1 | I | Į. | • | | | | The times per address listed in Table 1, give an indication of the relative times that were required to read a single measurement from each module. It appears that reading from the inclinometer module is particularly slow when only one parameter (either pitch angle or roll angle) is required. Bus time was reduced slightly when both pitch and roll angles were requested. However, it still seems that a considerable amount of time is spent in checking the conversion buffer of this module as indicated by a 0.164 seconds difference between the read results of freestream and pitch angle (1,2) and freestream (1) only. The addition of roll angle (3) only contributes another 0.054 seconds. The time for reading the conversion buffer of the inclinometer module was tested and determined to be approximately 0.130 seconds. These results confirm that the checking of the conversion buffer is responsible for the relatively slow reading of the inclinometer module. The sting column rig module is similar to the freestream parameter module in that it is PC based. However, the sting column rig user interface operates in an RTKernel environment as opposed to the DOS operating system for the freestream parameters. Despite this difference, bus communication times per address for each configuration appeared to be similar. The actuators and strain gauge modules appear to be operating satisfactorily with reasonable times per address of 0.053 and 0.064 seconds respectively. Figure 1. Graph showing the contribution of each parameter towards bus communication time. The graph shown in Figure 1 illustrates the bus communication times for each module, showing their effectiveness and how the speed of each compares with others. When the single digio message times are compared with the data obtained by adding individual bus times, an indicative time for the actual send command and data transfer can be obtained. A time of approximately 0.05 seconds was determined to be typical for a single send command operation. A time was also established for the entire bus communication loop and then an average time per iteration was simply calculated by dividing by the number of iterations. This was compared with the times determined previously. A negligible difference of less than 0.001 seconds was estimated. As expected, whether or not the tunnel was running did not significantly affect the bus communication times. # 3.3 Effect on Bus Communication Times Due to the State of the Instrumentation Modules (ON/OFF) Table 2 shows bus communication times obtained when all modules were switched on compared with those when only the required modules for the selected parameters were activated. It was determined that activating modules other than those modules required had a negligible effect on average bus communication times. Table 2. Average bus communication times per iteration over 100 iterations for different module states. | | Average Bus Communication Times, ∆t (seconds) | | | | |-------------|---|--------------------------|--|--| | Parameters | All modules ON | Only required modules ON | | | | 1 only | 0.574 | 0.577 | | | | 1,2,3 | 0.777 | 0.783 | | | | 1,2,4 | 0.782 | 0.796 | | | | 1,3,4 | 0.782 | 0.796 | | | | 1,2,3,5 | 1.194 | 1.200 | | | | 1,2,3,6 | 1.101 | 1.104 | | | | 1,2,3,5,6 | 1.495 | 1.506 | | | | 1,2,3,5,6,7 | 1.549 | 1.557 | | | ## 3.4 Anomalies and Accuracy of Data The existence and frequency of anomalies within the data for the cases described in Table 1 and Table 2, were observed and recorded. After ignoring these anomalies, an average bus time for the remaining data was calculated. The scatter of data was inspected by determining the number of points that deviated from the computed average by a chosen percentage tolerance. Example output data of 100 iterations for cases when the tunnel is and is not running is given in Appendix B. The data gives the number and type of anomalies typically present in the freestream parameters during bus communication. This information is summarised in Table 3 and Table 4. Table 3. Frequency and value of anomalies in the freestream parameters when the tunnel is not running. | | Tunnel Idle, v = 0.0 m/s | | | | | | |------------------------------|--------------------------|----------------------|---------------------------|---------------------|--|--| | Freestream
Parameters (1) | Number of
Anomalies | ≈ Anomaly value | Hexadecimal
Equivalent | ≈ Expected
Value | | | | Static pressure, Pt | 8 | 316.15 | 7B7F | 101.05 | | | | Dynamic pressure, q | 3 | 2 069 824. | 7B5F 0200 | 0.0 | | | | Air velocity, v | 0 | _ | - | 0.0 | | | | Air temperature, t | 14 | 316.13 | 7B7D | 23.1 | | | | Mach Number, M | 1 | 2069.593 | 7B5D 7BA8 | 0.0 | | | | Reynolds Number, Re | 2 | 2.07×10^{9} | 7B61 B180 | 0.0 | | | Table 4. Frequency and value of anomalies in the freestream parameters when the tunnel is running with an air speed of 60 m/s. | | Tunnel Active, v = 60.0 m/s | | | | | | |---------------------------|-----------------------------|----------------------|---------------------------|---------------------|--|--| |
Freestream Parameters (1) | Number of Anomalies | ≈ Anomaly value | Hexadecimal
Equivalent | ≈ Expected
Value | | | | Static pressure, Pt | 8 | 316.15 | 7B7F | 101.37 | | | | Dynamic pressure, q | 3 | 2 069 824. | 7B5F 0200 | 2219. | | | | Air speed, v | 7 | 2.07×10^7 | 7B61 B180 | 60.0 | | | | Air temperature, t | 16 | 316.13 | 7B7D | 17.5 | | | | Mach Number, M | 1 | 2069.593 | 7B5D 7BA8 | 0.131 | | | | Reynolds Number, Re | 1 | 2.07×10^{9} | 7B61 B180 | 4 103 890. | | | It appears that anomalies are relatively frequent among the freestream parameters. Although the data listed in the tables are representative of one test only, many tests were performed and the same trend was observed. The number of anomalies varied but they were always of a similar magnitude. The number of anomalies was generally lower in the parameters v, M and Re, and minimal in the case when the tunnel was idle. Similar trends were observed when the wind tunnel speed was increased to 30 m/s. When the tunnel was running at 60 m/s, anomalies were usually more abundant. This increase in poor data may be attributed to the AC drive motor, which must be activated to attain a tunnel speed of 60 m/s. The values of the anomalies appeared to always follow a similar pattern (as shown in the tables) and hence the hexadecimal equivalents are included as a reference. Because the sting column rig operates under a different PC based environment (Kernel) to the freestream parameter module, data obtained from the sting column rig was also examined for a similar trend. It was observed that the reading of pitch angle continuously produced false values. Only on three occasions from 100 iterations in a typical test, was the pitch angle read from the bus correctly. Otherwise, anomalies were almost non-existent compared with those reported for the freestream parameter module. Results of occasional tests on different days produced extremely irregular data in the freestream parameters even after the bus and all systems had been reset. This output was nonsensical and contained few values bearing any likeness to expected measurements. Reasons for the meaningless data obtained during these times have yet to be determined. ## 3.5 Corrective Actions Taken To increase the speed of the inclinometer module, modifications were made to the inclinometer module software so that it updated its database continuously. This eliminates the need for checking the conversion buffer before data is read from the bus. Although this modification will cause a slight time delay so that values read may lag the instantaneous physical position, this time delay is of the order of microseconds and is insignificant to the overall response. More tests were conducted to verify that the previously determined slow response of the inclinometer module was due to the checking of the conversion buffer. Results indicated that authentic data was recorded consistently and the bus communication time per address was reduced to 0.071 seconds for reading either the pitch or roll angle, and 0.121 seconds for reading both. ## 4. Conclusions and Recommendations Bus communication time was found to be relatively slow in some modules. This was true in the inclinometer module where the slow time was due to checking the conversion buffer. This was improved by modifying the inclinometer software to update its database continuously, thus eliminating the need for checking the conversion buffer prior to reading the parameters. Frequent anomalies were evident in output data of the freestream parameters in all tests. However, the other modules such as the actuators, strain gauges, model attitude and auxiliary modules appeared to function at a satisfactory speed and usually without any anomalies or poor data. Despite the different PC operating environment, bus communication with the sting column rig was similar in speed to that of the freestream parameter module. However, the reading of the pitch angle in the sting column rig almost always resulted in an incorrect value. Otherwise, very few anomalies were observed in the data compared with the many discrepancies detected in nearly all of the freestream parameters from the freestream parameter module. It is recommended that bus communication, hardware set-up and the software in the freestream parameter module be investigated to determine the causes of the anomalies. One possible way of improving data acquisition and communication is to connect a PC with the MicroVAX system. User instructions and input could then be performed on the PC and the raw and processed experimental data obtained could also be viewed. This will unclutter the operation of the MicroVAX and improve the speed and efficiency of data acquisition. ## Appendix A - Developed Software in Fortran Code ``` program bus read C----- c Author: Craig Edwards 29 March 1996 Date: C This program allows the user to interrogate a particular combination of modules in the LSWT data aquisition system. It compiles a digio_message from the user selection, communicates with the bus and writes the output to a file 'test.dat' for a user specified number of iterations. The average bus communication time for reading a digio message is also recorded. A statistical analysis is then performed on the collected data. The number of anomalies and data points which lie outside a chosen tolerance band are computed and written to the output file. C----- include ' [datain.digio] digio_include.for' include '[datain.digio]digiodef.h' external ss$_wasset deltat(1000), oldtime, accuracy, error real average(50), values(50), tol, store(0:16) real temp real data(50,1000), sum(50), tsum, tsuma, tsumb real integer*4 mposition, mcounter, num, iter, mlength,m integer*4 a, ecounter, most, b(0:16) integer*2 dlist(1000,1000) deltata(1000), deltatb(1000) real oldtime_total, time_total, oldtimeb real integer*4 mbox_write_code integer*4 status, sys$clref, С sys$wflor, sys$qiow, С sys$setef character selection*10, digio_message*256 character*15 d(50) pitch, roll, yaw, acts, sgs, motor logical logical c parameter (mbox_write_code = '70'X) CALL connect OPEN(1, file='test.dat', status='new', carriagecontrol='list') write(6,*) ' Choose parameters to be read:' write(6,*) write(6,*) ' free stream parameters' 2) pitch angle (inclinometer module)' write(6,*) ' write(6,*) ' 3) roll angle (inclinometer module)' 4) yaw angle (turntable module)'5) actuators' write(6,*) ' write(6,*) ' 6) strain gauges'7) motor speed (propellor)' write(6,*) ' write(6,*) ' write(6,*) ' 8) sting-column rig' write(6,*) write(6,10) 10 format('$ >> ') read(5,20) selection 20 format(a) write(6,30) 30 format(/'$ Enter number of iterations: ') read(5,*) iter ``` ``` pitch = .false. roll = .false. yaw = .false. acts = .false. sgs = .false. motor = .false. scr = .false. mposition = 7 mcounter = 0 m = 0 DO j=1,len(selection) C----- c Standard P,q,V,T,M,Re (free stream parameters) IF (selection(j:j).eq.'1') THEN digio_message(mposition:mposition+49) = 1 ' 478 493 494 484 485 479 495 496 486 487' d(m+1) = ' d(m+2) = 1 a d(m+3) = ' v d(m+4) = ' t d(m+5) = ' m d(m+6) = ' mposition = mposition+50 mcounter = mcounter+10 m = m+6 c Pitch, Roll, Yaw angles ELSEIF (selection(j:j).eq.'2') THEN pitch = .true. digio_message(mposition:mposition+4) = ' 158' d(m+1) = 1 THETA mposition = mposition+5 mcounter = mcounter+1 m = m+1 ELSEIF (selection(j:j).eq.'3') THEN digio_message(mposition:mposition+4) = ' 157' d(m+1) = ' PHI mposition = mposition+5 mcounter = mcounter+1 m = m+1 ELSEIF (selection(j:j).eq.'4') THEN yaw = .true. digio_message(mposition:mposition+4) = ' 652' PSI d(m+1) = ' mposition = mposition+5 mcounter = mcounter+1 m = m+1 c Actuator angles C----- ELSEIF (selection(j:j).eq.'5') THEN acts = .true. digio_message(mposition:mposition+39) = ``` ``` ' 812 822 832 842 852 862 872 882' d(m+1) = ' al d(m+2) = ' a2 d(m+3) = 1 a3 d (m+4) = 1 a4 d(m+5) = ' a5 d(m+6) = ' a6 d(m+7) = ' a7 d(m+8) = a8 mposition = mposition+40 mcounter = mcounter+8 m = m+8 C----- c Force measurement - Strain Gauges C----- ELSEIF (selection(j:j).eq.'6') THEN sgs = .true. digio_message(mposition:mposition+29) = 102 103 104 105 106 107 d(m+1) = ' d(m+2) = ' sgl sg2 d(m+3) = sg3 d(m+4) = ' sg4 d(m+5) = ' sg5 d(m+6) = ' sq6 mposition = mposition+30 mcounter = mcounter+6 m = m+6 c Powered Propellor ELSEIF (selection(j:j).eq.'7') THEN motor = .true. digio_message(mposition:mposition+4) = ' 190' d(m+1) = ' RPS mposition = mposition+5 mcounter = mcounter+1 m = m+1 ELSEIF (selection(j:j).eq.'8') THEN scr = .true. digio_message(mposition:mposition+24) = 1 710 711 712 713 d(m+1) = 1 alpha d(m+2) = ' d(m+3) = ' beta theta d(m+4) = ' phi mposition = mposition+25 mcounter = mcounter+4 m = m+4 ENDIF ENDDO IF (mcounter.ne.0) THEN c Complete digio_message mlength = mposition-1 digio_message(1:1) = 'H' write(digio_message(2:3),100) requestor_index 100 format(lx,il) ``` ``` write(digio message(4:6),110) mcounter 110 format(1x, i2) write(1,*) (d(k), k=1,m), ' deltat ' write(1,*) '----' 1 ,'----- oldtime_total = secnds(0.0) DO i=1, iter oldtime = secnds(0.0) _____ c Send trigger to ADC's CALL send ('H',1,2,status) deltata(i) = secnds(oldtime) C---- c Check conversion buffer of the SG amplifier module oldtimeb = secnds(0.0) IF (sgs) THEN data_list(data_start_addr) = 'AAAA'X DO WHILE ((data_list(data_start_addr) .NE. 0) .AND. (ii .LT. 50)) CALL send ('H',1,101, status) ii = ii + 1 END DO ENDIF c Check conversion buffer of the inclinometer module IF ((pitch).or.(roll)) THEN С C C data_list(data_start_addr) = 'AAAA'X С DO WHILE ((data_list(data_start_addr) .NE. 0) .AND. C (ii .LT. 50)) С CALL send ('H', 1, 169, status) ii = ii + 1 С END DO C С ENDIF С deltatb(i) = secnds(oldtimeb) c Bus communication C----- status = sys$qiow (, %VAL(digio_mbox_chan), %VAL(mbox_write_code), , , , 1 %REF(digio_message), %VAL(256), , , ,) status = sys$setef (%VAL(64)) status = sys$wflor (%VAL(64), %VAL(efn_mask)) status = sys$clref (%VAL(efn_success)
) status = sys$clref (%VAL(efn_error)) IF (status.eq.%LOC(ss$_wasset)) THEN call type_error ENDIF deltat(i) = secnds(oldtime) DO iii = 1,1000 dlist(iii,i) = data_list(iii) ENDDO ENDDO ``` ``` time_total = secnds(oldtime_total) tsum = 0.0e0 tsuma = 0.0e0 tsumb = 0.0e0 DO i = 1, iter DO iii = 1,1000 data_list(iii) = dlist(iii,i) ENDDO CALL conv(data_list, values, selection, num) DO iii=1, num data(iii,i) = values(iii) DOCINA C----- c Output values obtained write(1,*) (values(iii), iii=1,num), deltat(i) write(1,*) '-----' 1 , '----' tsum = tsum + deltat(i) tsuma = tsuma + deltata(i) tsumb = tsumb + deltatb(i) ENDDO write(1,*) write(1,*) 'Average bus communication time per iteration = ' ,tsum/real(iter) write(6,*) 'Average bus communication time per iteration = ' 1 ,tsum/real(iter) write(6,*) 'Average bus communication time per iteration = ' 1 ,time_total/real(iter) (calculated from total time)' write(6.*) ' write(6,*) 'Average bus communication time per iteration = ' 1 ,tsuma/real(iter) (for triggering of all modules)' write(6,*) ' write(6,*) 'Average bus communication time per iteration = ' ,tsumb/real(iter) (for reading of conversion buffers)' write(6,*) ' write(1,*) c Begin statistical analysis !percentage accuracy = 5.0 DO iii=1, num ecounter = 0 sum(iii) = 0. a = 0 C----- c Determine tolerance band based on order of magnitude of first point. Determine what value range exists by majority and set this to the typical value from which anomalies and data accuracy is c obtained. (Needs alteration and improvement) DO k=0.16 b(k) = 0 ENDDO DO j = 1, iter cont = .true. k = 6 ``` ``` DO WHILE ((cont).and.(k.ge.0)) IF (data(iii,j).gt.2*10.**k) THEN b(k) = b(k) + 1 store(k) = data(iii,j) cont = .false. ELSEIF (data(iii,j).lt.-(2*10.**k)) THEN b(k+7) = b(k+7)+1 store(k+7) = data(iii,j) cont = .false. ELSEIF (abs(data(iii,j)).lt.0.001) THEN b(14) = b(14)+1 store(14) = data(iii,j) cont = .false. ELSEIF (abs(data(iii,j)).lt.1.) THEN b(15) = b(15)+1 store(15) = data(iii,j) cont = .false. ELSEIF (abs(data(iii,j)).lt.2.) THEN b(16) = b(16)+1 store(16) = data(iii,j) cont = .false. ELSE k = k-1 ENDIF ENDDO ENDDO most = 0 DO k = 0.16 IF (b(k).gt.most) THEN most = b(k) temp = store(k) ENDIF ENDDO IF (temp.lt.0.001) THEN tol = 0.0001 ELSEIF (temp.lt.1.) THEN tol = 0.05 ELSEIF (temp.1t.2.) THEN tol = 0.1 ELSEIF (temp.lt.50.) THEN tol = 2. ELSEIF (temp.lt.100.) THEN tol = 5. ELSEIF (temp.lt.1000.) THEN tol = 100. ELSE tol = 1000000. ENDIF c Record number of anomalies, compute average from remainder and determine the no. of points which deviate from this average. ------ DO i=1,iter IF (abs(data(iii,i)-temp).gt.tol) THEN a = a+1 ELSE sum(iii) = sum(iii) + data(iii,i) ENDIF ENDDO average(iii) = sum(iii) / real(iter-a) DO i=1, iter IF (abs(average(iii)).gt.0.0001) THEN error = ((data(iii,i))-average(iii)) /average(iii) * 100.0 IF (abs(error).gt.accuracy) THEN ecounter = ecounter+1 ENDIF error = data(iii,i)-average(iii) IF (abs(error).gt.1.0) THEN ``` ``` ecounter = ecounter+1 ENDIF ENDIF ENDDO c Output statistics results IF ((a.ne.0).or.(ecounter.ne.0)) THEN write(1,120) 'DATA COLUMN ',iii format(a,i2) 120 ENDIF IF (a.ne.0) THEN write(1,121) 'There are ',a,' anomalies present' format(t10,a,i3,a) 121 ENDIF IF (ecounter.ne.0) THEN write(1,122) 'There are ',ecounter,' point(s)', ' with a deviation > ',accuracy,'% from the average' format(t10,a,i3,2a,f4.1,a/) 122 ENDIF ENDDO ENDIF CLOSE(1) CALL disconnect STOP END ``` ``` subroutine conv(data, values, selection, num) include '[datain.digio]digio_include.for' include '[datain.digio]digiodef.h' integer*2 data(*) integer*2 mask integer*4 i4upper, i4lower, hextodec character selection*(*) divisor, values(50) real parameter (mask = '7FFF'X) parameter (divisor = 3276.8) i = data_start_addr ii = 1 DO j=1,len(selection) IF (selection(j:j).eq.'1') THEN values(ii) = dfloat(data(i))/100.0 i4upper = data(i+1) i4lower = data(i+2) values(ii+1) = dfloat(hextodec(i4upper,i4lower))/1.0e3 i4upper = data(i+3) i4lower = data(i+4) values(ii+2) = dfloat(hextodec(i4upper,i4lower))/100.0 values(ii+3) = dfloat(data(i+5))/100.0 i4upper = data(i+6) i4lower = data(i+6) values(ii+4) = dfloat(hextodec(i4upper,i4lower))/1.0e6 i4upper = data(i+8) i4lower = data(i+9) values(ii+5) = dfloat(hextodec(i4upper,i4lower)) i = i+10 ii = ii+6 ELSEIF (selection(j:j).eq.'2') THEN values(ii) = data(i)/100. i = i+1 ii = ii+1 ELSEIF (selection(j:j).eq.'3') THEN values(ii) = data(i)/100. i = i+1 ii = ii+1 ELSEIF (selection(j:j).eq.'4') THEN values(ii) = data(i)/100. i = i+1 ii = ii+1 ELSEIF (selection(j:j).eq.'5') THEN DO inc = 0.7 values(ii+inc) = data(i+inc)/100.0 ENDDO i = i+8 ii = ii+8 ELSEIF (selection(j:j).eq.'6') THEN DO inc = 0.5 values(ii+inc) = iieor(data(i+inc),mask)/divisor ENDDO i = i+6 ii = ii+6 ``` ``` ELSEIF (selection(j:j).eq.'7') THEN values(ii) = data(i)/10.0 i = i+1 ii = ii+1 ELSEIF (selection(j:j).eq.'8') THEN values(ii) = data(i)/100.0 values(ii+1) = data(i+1)/100.0 values(ii+2) = data(i+2)/100.0 values(ii+3) = data(i+3)/100.0 i = i+4 ii = ii+4 ENDIF ENDDO num = ii-1 RETURN END ``` # Appendix B - Sample Output Data | Tunnel Idle | Speed = 0.0 m/s | |-------------|---------------------------| |-------------|---------------------------| | p
re | q
deltat | v | t | m | |---------------------------|----------------------------|---------------|----------|---------------| | 316.0700
0.0000000E+00 | 0.0000000E+00
0.6015625 | 0.0000000E+00 | 23.08000 | 0.000000E+00 | | 101.0600
0.0000000E+00 | 0.0000000E+00
0.5820313 | 0.000000E+00 | 23.01000 | 0.000000E+00 | | 101.0500
0.0000000E+00 | 0.0000000E+00
0.5625000 | 0.000000E+00 | 23.00000 | 0.000000E+00 | | 101.0600
2.0708721E+09 | 0.0000000E+00
0.5312500 | 0.000000E+00 | 23.01000 | 0.0000000E+00 | | 101.0400
0.0000000E+00 | 0.0000000E+00
0.5429688 | 0.000000E+00 | 23.09000 | 0.0000000E+00 | | 101.0400
0.0000000E+00 | 0.0000000E+00
0.5585938 | 0.0000000E+00 | 23.00000 | 0.0000000E+00 | | 101.0500
0.0000000E+00 | 0.0000000E+00
0.5898438 | 0.0000000E+00 | 316.1300 | 0.000000E+00 | | 101.0400
0.0000000E+00 | 0.0000000E+00
0.5507813 | 0.0000000E+00 | 23.08000 | 0.0000000E+00 | | 101.0600
0.0000000E+00 | 0.0000000E+00
0.5898438 | 0.0000000E+00 | 23.05000 | 0.0000000E+00 | | 101.0600
0.0000000E+00 | 0.0000000E+00
0.5820313 | 0.0000000E+00 | 316.1300 | 0.0000000E+00 | | 101.0400
0.0000000E+00 | 0.0000000E+00
0.5703125 | 0.0000000E+00 | 316.1300 | 0.0000000E+00 | | 101.0600
0.0000000E+00 | 0.0000000E+00
0.6093750 | 0.0000000E+00 | 23.06000 | 0.0000000E+00 | | 101.0500
0.0000000E+00 | 0.0000000E+00
0.5820313 | 0.0000000E+00 | 23.04000 | 0.0000000E+00 | | 101.0400
0.0000000E+00 | 2069824.
0.5585938 | 0.0000000E+00 | 23.01000 | 0.000000E+00 | | 101.0500
0.0000000E+00 | 0.0000000E+00
0.5898438 | 0.0000000E+00 | 23.05000 | 0.0000000E+00 | | 101.0400
0.0000000E+00 | 0.0000000E+00
0.5820313 | 0.0000000E+00 | 23.08000 | 0.0000000E+00 | | 0.000000E+00 | | | 23.02000 | 0.000000E+00 | | 101.0600 | 0.0000000E+00 | 0.000000E+00 | 23.09000 | 0.0000000E+00 | | 316.1500
0.0000000E+00 | 0.0000000E+00
0.5937500 | 0.000000E+00 | 316.1300 | 0.000000E+00 | | 101.0500
0.0000000E+00 | 0.0000000E+00
0.5820313 | 0.000000E+00 | | 0.000000E+00 | | 101.0600 | 0.0000000E+00 | | 23.12000 | 0.000000E+00 | | 316.1500 | 0.000@000E+00 | 0.000000E+00 | 23.06000 | 0.000000E+00 | | 0.0000000E+00 | 0.5820313
 | | | | |---------------------------|----------------------------|---------------|----------|---------------| | 101.0500
0.0000000E+00 | 0.0000000E+00
0.5585938 | 0.0000000E+00 | 23.10000 | 0.0000000E+00 | | 101.0500
0.0000000E+00 | 0.0000000E+00
0.5898438 | 0.000000E+00 | 23.05000 | 0.000000E+00 | | 101.0400
0.0000000E+00 | 0.0000000E+00
0.5898438 | 0.000000E+00 | 23.04000 | 0.000000E+00 | | 101.0400
0.0000000E+00 | 31.58100
0.5781250 | 0.0000000E+00 | 23.01000 | 0.0000000E+00 | | 101.0500
0.0000000E+00 | 0.0000000E+00
0.5468750 | 0.0000000E+00 | 23.00000 | 0.000000E+00 | | 101.0400
0.0000000E+00 | 0.0000000E+00
0.5781250 | 0.0000000E+00 | 23.08000 | 0.0000000E+00 | | 101.0500
0.0000000E+00 | 0.0000000E+00
0.6015625 | 0.0000000E+00 | 23.01000 | 2069.593 | | 101.0600
0.0000000E+00 | 0.0000000E+00
0.6015625 | 0.0000000E+00 | 23.06000 | 0.000000E+00 | | 101.0400
0.0000000E+00 | 0.0000000E+00
0.5820313 | 0.0000000E+00 | 23.09000 | 0.000000E+00 | | 316.1500
0.0000000E+00 | 0.0000000E+00
0.5820313 | 0.000000E+00 | 23.06000 | 0.000000E+00 | | 101.0400
0.0000000E+00 | 0.0000000E+00
0.5625000 | 0.0000000E+00 | 23.05000 | 0.000000E+00 | | 101.0500
0.0000000E+00 | 0.0000000E+00
0.5820313 | 0.0000000E+00 | 23.09000 | 0.0000000E+00 | | 101.0400
0.0000000E+00 | 0.0000000E+00
0.5820313 | 0.0000000E+00 | 23.04000 | 0.000000E+00 | | 101.0600
0.0000000E+00 | 0.0000000E+00
0.5625000 | 0.0000000E+00 | 23.05000 | 0.000000E+00 | | 101.0400
0.0000000E+00 | 0.0000000E+00
0.5781250 | 0.0000000E+00 | 23.05000 | 0.0000000E+00 | | 101.0500
0.0000000E+00 | 0.0000000E+00
0.5898438 | 0.000000E+00 | 23.12000 | 0.0000000E+00 | | 101.0400
0.0000000E+00 | 0.0000000E+00
0.5820313 | 0.0000000E+00 | 23.05000 | 0.0000000E+00 | | 101.0400 | 0.0000000E+00 | 0.000000E+00 | 23.09000 | 0.000000E+00 | | 101.0600
0.000000E+00 | 0.0000000E+00
0.5781250 | 0.000000E+00 | 23.12000 | 0.0000000E+00 | | 101.0500 | 0.0000000E+00 | 0.000000E+00 | 23.06000 | 0.000000E+00 | | 101.0400 | 0.0000000E+00 | 0.000000E+00 | 23.12000 | 0.0000000E+00 | | 101.0500 | 0.0000000E+00 | 0.000000E+00 | 316.1300 | 0.000000E+00 | | 101.0500 | 2069824.
0 5507813 | 0.0000000E+00 | 23.15000 | 0.0000000E+00 | | 101.0600
0.000000E+00 | 0.0000000E+00
0.5976563 | 0.000000E+00 | 23.13000 | 0.0000000E+00 | | 101.0400
0.0000000E+00 | 0.000000E+00 | 0.000000E+00 | 23.05000 | 0.0000000E+00 | | | | | | | | | 0.0000000E+00
0.5390625 | 0.0000000E+00 |
23.10000 | 0.0000000E+00 | |---------------------------|----------------------------|---------------|----------|---------------| | | 0.0000000E+00
0.5820313 | 0.0000000E+00 | 23.06000 | 0.0000000E+00 | | 101.0400
0.0000000E+00 | 0.0000000E+00
0.5898438 | 0.000000E+00 | 316.1300 | 0.0000000E+00 | | 101.0600
0.0000000E+00 | 0.0000000E+00
0.5507813 | 0.0000000E+00 | 23.13000 | 0.0000000E+00 | | 101.0600
0.0000000E+00 | 0.0000000E+00
0.5625000 | 0.0000000E+00 | 316.0500 | 0.0000000E+00 | | 101.0600
0.0000000E+00 | 0.0000000E+00
0.5898438 | 0.0000000E+00 | 23.09000 | 0.0000000E+00 | | 101.0500
0.0000000E+00 | 0.0000000E+00
0.5781250 | 0.0000000E+00 | 23.16000 | 0.0000000E+00 | | 101.0400
0.0000000E+00 | 0.0000000E+00
0.6210938 | 0.0000000E+00 | 23.13000 | 0.000000E+00 | | 101.0500
0.0000000E+00 | 0.0000000E+00
0.5625000 | 0.000000E+00 | 316.1300 | 0.000000E+00 | | 101.0400
0.0000000E+00 | 0.0000000E+00
0.5703125 | 0.000000E+00 | 23.12000 | 0.0000000E+00 | | 101.0400
0.0000000E+00 | 0.0000000E+00
0.5898438 | 0.0000000E+00 | 23.10000 | 0.0000000E+00 | | 101.0600
0.0000000E+00 | 0.0000000E+00
0.5781250 | 0.0000000E+00 | 23.13000 | 0.000000E+00 | | 101.0500
0.0000000E+00 | 0.0000000E+00
0.5703125 | 0.000000E+00 | 23.12000 | 0.000000E+00 | | 101.0600
0.0000000E+00 | 0.0000000E+00
0.5820313 | 0.0000000E+00 | 23.12000 | 0.000000E+00 | | 101.0600
0.0000000E+00 | 0.0000000E+00
0.5507813 | 0.000000E+00 | 23.10000 | 0.000000E+00 | | 101.0400
0.0000000E+00 | 0.000000E+00
0.5898438 | 0.000000E+00 | 23.10000 | 0.000000E+00 | | 101.0400
0.0000000E+00 | 0.0000000E+00
0.5976563 | 0.000000E+00 | 23.17000 | 0.000000E+00 | | 0.000000E+00 | 0.5703125 | 0.0000000E+00 | 316.0500 | 0.000000E+00 | | 0 000000E+00 | 0.0000000E+00 | 0.000000E+00 | | 0.000000E+00 | | 316.1500 | 0.0000000E+00 | 0.000000E+00 | 23.17000 | 0.000000E+00 | | 101.0500
0.0000000E+00 | 0.0000000E+00
0.5585938 | 0.000000E+00 | 23.12000 | 0.000000E+00 | | 316.1500
0.0000000E+00 | 0.5429688 | | 23.13000 | 0.000000E+00 | | 101.0400
0.000000E+00 | 0.0000000E+00 | 0.000000E+00 | 316.1300 | | | 101.0600
0.000000E+00 | 0.0000000E+00
0.5976563 | 0.000000E+00 | 316.0500 | 0.0000000E+00 | | 316.1500
0.0000000E+00 | 0.000000E+00 | 0.000000E+00 | 23.12000 | 0.0000000E+00 | | 101.0400
0.0000000E+00 | 0.000000E+00 | | | 0.000000E+00 | | | | | | | | 101.0600
2.0708721E+09 | 0.0000000E+00
0.5273438 | 0.0000000E+00 | 23.13000 | 0.0000000E+00 | |---|----------------------------|---------------|----------|---------------| | 101.0500
0.0000000E+00 | 0.0000000E+00
0.5390625 | 0.0000000E+00 | 23.13000 | 0.0000000E+00 | | 101.0500
0.0000000E+00 | 0.0000000E+00
0.5781250 | 0.0000000E+00 | 23.12000 | 0.0000000E+00 | | 101.0600
0.0000000E+00 | 0.0000000E+00
0.5898438 | 0.0000000E+00 | 23.13000 | 0.0000000E+00 | | 101.0400
0.0000000E+00 | 0.000000E+00
0.5625000 | 0.000000E+00 | 23.16000 | 0.0000000E+00 | | 101.0400
0.0000000E+00 | 0.0000000E+00
0.5781250 | 0.0000000E+00 | 23.17000 | 0.0000000E+00 | | 101.0500
0.0000000E+00 | 0.0000000E+00
0.5898438 | 0.0000000E+00 | 23.15000 | 0.0000000E+00 | | 101.0400
0.0000000E+00 | 0.0000000E+00
0.5781250 | 0.000000E+00 | 23.17000 | 0.0000000E+00 | | 101.0500
0.0000000E+00 | 0.0000000E+00
0.5585938 | 0.0000000E+00 | 23.13000 | 0.0000000E+00 | | 101.0500
0.0000000E+00 | 0.0000000E+00
0.5898438 | 0.0000000E+00 | 23.13000 | 0.0000000E+00 | | 101.0400
0.0000000E+00 | 0.0000000E+00
0.5781250 | 0.000000E+00 | 23.15000 | 0.0000000E+00 | | 101.0500
0.0000000E+00 | 0.0000000E+00
0.5507813 | 0.0000000E+00 | 316.1300 | 0.0000000E+00 | | 101.0500
0.0000000E+00 | 0.0000000E+00
0.5898438 | 0.0000000E+00 | 23.16000 | 0.0000000E+00 | | 101.0400
0.0000000E+00 | 0.0000000E+00
0.5820313 | 0.0000000E+00 | 316.1300 | 0.0000000E+00 | | 316.1500
0.0000000E+00 | 0.0000000E+00
0.5898438 | 0.000000E+00 | 23.15000 | 0.0000000E+00 | | 101.0500
0.0000000E+00 | 0.0000000E+00
0.5390625 | 0.000000E+00 | 23.15000 | 0.0000000E+00 | | 101.0600
0.0000000E+00 | 0.0000000E+00
0.5820313 | 0.000000E+00 | 23.17000 | 0.0000000E+00 | | 0.0000000000000000000000000000000000000 | 0 5898438 | | | 0.0000000E+00 | | 101.0600
0.000000E+00 | 0.0000000E+00
0.5585938 | 0.0000000E+00 | 23.15000 | 0.0000000E+00 | | 101.0500
0.0000000E+00 | 0.0000000E+00
0.5820313 | 0.0000000E+00 | 23.16000 | 0.0000000E+00 | | 101.0500 | 0.0000000E+00 | 0.000000E+00 | 23.16000 | 0.000000E+00 | | 101.0500 | 0.0000000E+00
0.5898438 | 0.000000E+00 | 23.15000 | 0.0000000E+00 | | 101.0500 | 0.0000000E+00 | 0.0000000E+00 | 23.15000 | 0.000000E+00 | | 101.0400
0.0000000E+00 | 0.000000E+00 | 0.0000000E+00 | 316.0500 | 0.0000000E+00 | | 101.0500
0.0000000E+00 | 0.0000000E+00
0.5898438 | 0.000000E+00 | 23.16000 | 0.0000000E+00 | | 101.0600 | 0.0000000E+00 | | | 0.000000E+00 | 0.0000000E+00 0.5781250 101.0500 0.0000000E+00 0.0000000E+00 23.15000 0.0000000E+00 0.0000000E+00 0.6679688 ------Average bus communication time average = 0.5753515 DATA COLUMN 1 There are 8 anomalies present There are 8 point(s) with a deviation > 5.0% from the average DATA COLUMN 2 There are 3 anomalies present There are 3 point(s) with a deviation > 5.0% from the average DATA COLUMN 4 There are 14 anomalies present There are 14 point(s) with a deviation > 5.0% from the average DATA COLUMN 5 There are 1 anomalies present There are 1 point(s) with a deviation > 5.0% from the average DATA COLUMN 6 There are 2 anomalies present There are 2 point(s) with a deviation > 5.0% from the average | Tunnel Active | Speed | 1 = 60 m/s | | | |----------------------|-----------------------|---------------|----------|-----------| | p
re | q
deltat | v | t | m | | 101.3800
4099761. | 2208.208
0.5703125 | 60.28000 | 316.1300 | 0.1310740 | | 101.3800
4099278. | 2194.269
0.5390625 | 60.26000 | 17.47000 | 0.1310740 | | 101.3700
4098640. | 2209.835
0.6015625 | 60.27000 | 17.55000 | 0.1310740 | | 101.3700
4101715. | 2209.835
0.5898438 | 2.0711658E+07 | 316.1300 | 0.1310740 | | 101.3700
4098728. | 2209.835
0.5703125 | 60.30000 | 17.59000 | 0.1310740 | | 101.3700
4100828. | 2209.846
0.5507813 | 60.29000 | 17.57000 | 0.1310740 | | 101.3700
4099040. | 2209.835
0.6015625 | 60.30000 | 17.57000 | 0.1310740 | | 101.3700
4103318. | 2209.846
0.5898438 | 60.31000 | 17.52000 | 0.1310740 | | 101.3800 | 2211.465
0.5781250 | 60.31000 | 316.1300 | 0.1310740 | | 101.3700 | 2211.496
0.6015625 | 60.32000 | 17.62000 | 0.1310740 | | 316.1500
4101403. | 2211.496
0.5703125 | 2.0711658E+07 | 17.53000 | 0.1310740 | | 101.3700
4099471. | 2211.496 | 60.32000 | 17.53000 | 0.1310740 | | 316.1500
4102059. | 2213.145
0.5898438 | 60.35000 | 17.58000 | 0.1310740 | | 101.3700
4101698. | 2211.496
0.5703125 | 60.32000 | 17.59000 | 0.1310740 | | 101.3700
4103181. | 2211.484
0.5468750 | 2.0711658E+07 | 17.51000 | 0.1310740 | | | 2069872.
0.6015625 | 60.34000 | 17.53000 | 0.1310740 | | 101.3700
4102968. | 2213.134
0.5898438 | 60.34000 | | 0.1310740 | | 101.3900 | 2213.126
0.5703125 | 60.34000 | 17.53000 | 0.1310740 | | 101.3800 | 2214.765 | 60.33000 | 17.52000 | 0.1310740 | | 101.3700
4100936. | 2213.134
0.5468750 | 60.35000 | 17.64000 | | | 101.3700
4104734. | 2214.795
0.5898438 | 60.37000 | 17.52000 | | | 101.3900
4103836. | 2216.468
0.5781250 | 60.36000 | 17.57000 | 0.1310740 | | 101.3700 | 2194.269 | 60.37000 | 17.62000 | 0.1310740 | | 101.3600
4103229. | 2214.771
0.5898438 | 60.38000 | 17.68000 | 0.1310740 | | 101.3700
4104128. | 2214.784
0.5703125 | 60.37000 | 17.63000 | 0.1310740 | |---------------------------|-----------------------|---------------|----------|-----------| | 101.3700
4103678. | 2216.433
0.5507813 | 60.39000 | 17.58000 | 0.1310740 | | 101.3700
4105027. | 2214.795
0.5898438 | 2.0714024E+07 | 17.58000 | 0.1310740 | | 101.3700
4102916. | 2214.784
0.6015625 | 60.38000 | 17.71000 | 0.1310740 | | 101.3700
4103278. | 2069877.
0.5898438 | 60.41000 | 17.69000 | 0.1310740 | | 101.3700
4105076. | 2216.445
0.5781250 | 60.39000 | 17.59000 | 0.1310740 | | 101.3800
4104939. | 2216.457
0.6015625 | 60.37000 | 17.62000 | 0.1310740 | | 101.3700
4103162. | 2218:052
0.5898438 | 60.41000 | 316.1300 | 0.1310740 | | 101.3800
4104802. | 2216.457
0.5664063 | 60.39000 | 17.59000 | 0.1310740 | | 101.3700
4103366. | 2216.433
0.5507813 | 60.42000 | 17.66000 | 0.1310740 | | 101.3600
4104478. | 2218.071
0.6015625 | 60.42000 | 17.61000 | 0.1310740 | | 101.3700
4106139. | 2218.083
0.5781250 | 60.42000 | 17.62000 | 0.1310740 | | 101.3800
4103890. | 2194.269
0.5781250 | 60.39000 | 17.64000 | 0.1310740 | | 101.3800
4106589. | 2218.064
0.5898438 | 2.0711402E+07 | 17.59000 | 0.1310740 | | 101.3800
4104790. | 2218.064
0.5703125 | 60.42000 | 17.69000 | 0.1310740 | | 101.3800
4106139. | 2216.457
0.5507813 | 60.42000 | 316.1300 | 0.1310740 | | 101.3700
2.0709133E+09 | | 60.42000 | 17.71000 | 0.1310740 | | 101.3700
4106002. | 2218.052
0.5898438 | 60.41000 | 17.62000 | | | 101.3700
4105465. | 2219.702
0.5820313 | 60.41000 | 17.66000 | 0.1310740 | | 101.3700 | 2218.052
0.5976563 | 60.45000 | 17.74000 | 0.1310740 | | 101.3800
4105690. | 2219.714
0.5898438 | 60.44000 | 17.69000 | 0.1310740 | | 101.3800
4107465. | 2219.714
0.6015625 | 60.44000 | 316.1300 | | | 101.3800 | 2219.714
0.5898438 | 60.44000 | 17.71000 | 0.1310740 | | 101.3700 | 2221.352
0 5820313 | 60.45000 | 17.73000 | 0.1310740 | | 101.3700
4106889. | 2219.702
0.5976563 | 60.44000 | 17.67000 | 0.1310740 | | 101.3900 | 2221.376 | 60.46000 | | | | 101.3800 2221.364 60.47000 17.69000 0.1310740 | 4108566. | 0.5898438 | | | |
--|----------------------|-----------------------|----------|----------|-----------| | 101.3700 | | | 60.47000 | 17.69000 | 0.1310740 | | 101.3700 2219.690 60.44000 17.68000 0.1310740 4108115. 0.5898438 | | | 60.46000 | 17.63000 | 0.1310740 | | 101.3700 | | | 60.44000 | 17.68000 | 0.1310740 | | 101.3700 | _ | | 60.44000 | 17.68000 | 0.1310740 | | 101.3800 | | | 60.44000 | 17.68000 | 0.1310740 | | 101.3700 | | | 60.47000 | 17.67000 | 0.1310740 | | 101.3700 | | | 60.46000 | 17.67000 | 0.1310740 | | 101.3700 | | | 60.46000 | 17.67000 | 0.1310740 | | 316.1500 222.014 60.49000 17.72000 2069.593 101.3700 2224.651 60.49000 17.72000 2069.593 410300. 0.5781250 101.3700 2224.651 60.49000 17.68000 0.1310740 4109389. 0.6015625 101.3700 2222.989 60.49000 17.72000 0.1310740 4107812. 0.5898438 101.3900 2223.026 60.49000 17.71000 0.1310740 4094829. 0.5781250 101.3700 2224.681 60.50000 316.1300 0.1310740 4108163. 0.5507813 101.3600 2224.668 60.52000 316.1300 0.1310740 410312. 0.6015625 | | | 60.49000 | 17.72000 | 0.1310740 | | 101.3700 | | | 60.49000 | 17.69000 | 0.1310740 | | 101.3700 | | | 60.49000 | 17.72000 | 2069.593 | | 101.3700 2223.026 60.49000 17.71000 0.1310740 4094829. 0.5781250 101.3700 2224.681 60.50000 316.1300 0.1310740 4108163. 0.5507813 101.3600 2224.668 60.52000 316.1300 0.1310740 410312. 0.6015625 | | | 60.49000 | 17.68000 | 0.1310740 | | 101.3900 2223.026 00.42000 | | | 60.49000 | 17.72000 | 0.1310740 | | 101.3700 2224.681 60.5000 316.1300 0.1310740 4110312. 0.6015625 | | | 60.49000 | 17.71000 | 0.1310740 | | 4110312. 0.6015625 | | | 60.50000 | 316.1300 | 0.1310740 | | 60 51000 17 76000 0 1310740 | | | 60.52000 | 316.1300 | 0.1310740 | | 101.3800 2224.676 60.51000 17.76000 0.1310710
4109999. 0.5625000 | 101.3800
4109999. | 2224.676
0.5625000 | 60.51000 | 17.76000 | 0.1310740 | | 101.3900 2224.676 60.52000 316.1300 0.1310740
4109184. 0.5468750 | 101.3900 | 2224.676 | 60.52000 | 316.1300 | 0.1310740 | | 101.3800 2194.269 60.51000 316.0500 0.1310740
4110400. 0.5898438 | 101.3800 | 2194.269 | 60.51000 | 316.0500 | 0.1310740 | | 101.3800 2226.313 60.53000 17.69000 0.1310740
4110988. 0.5703125 | 101.3800 | 2226.313 | 60.53000 | 17.69000 | 0.1310740 | | 101.3600 2221.369 60.50000 17.76000 0.1310740
4109624. 0.5507813 | 101.3600 | 2221.369
0.5507813 | 60.50000 | 17.76000 | 0.1310740 | | 101.3700 2194.269 60.52000 17.77000 0.1310740
4109047. 0.5898438 | 101.3700 | 2194.269 | 60.52000 | 17.77000 | 0.1310740 | | 101.3700 2226.300 60.54000 17.72000 0.1310740
4111947. 0.5703125 | 101.3700 | 2226.300
0.5703125 | 60.54000 | 17.72000 | 0.1310740 | | 101.3700 2224.681 60.54000 17.71000 0.1310740
4110387. 0.5507813 | 101.3700 | 2224.681
0.5507813 | 60.54000 | 17.71000 | 0.1310740 | | 316.1500 2226.318 60.52000 316.1300 0.1310740
4111634. 0.6015625 | 316 1500 | 2226.318 | 60.52000 | 316.1300 | 0.1310740 | | 101.3800
4108821. | 2226.300
0.5625000 | 60.54000 | 17.81000 | 0.1310740 | |----------------------|---------------------------|---------------|----------|-----------| | 101.3700
4110356. | 2226.300
0.5468750 | 60.52000 | 17.79000 | 0.1310740 | | 101.3600
4109173. | 2224.668
0.5898438 | 60.52000 | 316.1300 | 0.1310740 | | 101.3700
4109917. | 2224.651
0.5703125 | 60.52000 | 316.1300 | 0.1310740 | | 101.3700
4109829. | 2226.300
0.5507813 | 60.53000 | 17.84000 | 0.1310740 | | 101.3800 | 2226.313
0.5898438 | 60.55000 | 17.83000 | 0.1310740 | | 101.3800
4110732. | 2194.269
0.5781250 | 60.54000 | 316.1300 | 0.1310740 | | 101.3700
4113269. | 2224.681
0.5507813 | 60.54000 | 17.73000 | 0.1310740 | | 101.3700
4113269. | 2226.300
0.6015625 | 60.55000 | 17.86000 | 0.1310740 | | 101.3700
4113720. | 2227.950
0.5625000 | 60.56000 | 17.71000 | 0.1310740 | | 101.3700
4111915. | 2226.288
0.5468750 | 60.57000 | 17.81000 | 0.1310740 | | 101.3700
4112718. | 2069889.
0.5898438 | 60.56000 | 17.77000 | 0.1310740 | | 101.3600
4112580. | 2227.967
0.5703125 | 2.0711402E+07 | 17.76000 | 0.1310740 | | 101.3700
4113269. | 2227.980
0.5507813 | 60.58000 | 17.73000 | 0.1310740 | | 101.3700
4114502. | 2227.950
0.5898438 | 60.57000 | 17.82000 | 0.1310740 | | 101.3700
4115041. | 2229.600
0.5703125 | 60.59000 | 17.72000 | 0.1310740 | | 101.3800
4115041. | 2229.612
0.5898438 | 60.58000 | 17.72000 | 0.1310740 | | 101.3700
4115546. | 2231.249
0.5625000 | 2.0711402E+07 | 316.0500 | 0.1310740 | | 4115998. | 2229.587
0.5898438 | 60.59000 | 17.74000 | 0.1310740 | | | 2231.249
0.5781250 | 60.61000 | 17.78000 | | | 101.3800
4118133. | 2231.220
0.5507813 | 60.61000 | 17.74000 | 0.1310740 | | 316.1500
4117544 | 2232.886
0.5781250 | 60.63000 | 316.1300 | 0.1310740 | | 101.3600 | 2232.916
0.5507813 | 60.63000 | 17.76000 | 0.1310740 | | 316.1500
4117230. | 2232.883
0.6015625 | 60.63000 | 17.77000 | 0.1310740 | | 316.1500
4117230. | 2232.883
1.9531250E-02 | 60.63000 | 17.77000 | 0.1310740 | | | | | | | Average bus communication time per iteration = 0.5619922 ``` DATA COLUMN 1 There are 8 anomalies present There are 8 point(s) with a deviation > 5.0% from the average DATA COLUMN 2 There are 3 anomalies present There are 7 anomalies present There are 7 point(s) with a deviation > 5.0% from the average DATA COLUMN 3 There are 7 point(s) with a deviation > 5.0% from the average DATA COLUMN 4 There are 16 anomalies present There are 16 point(s) with a deviation > 5.0% from the average DATA COLUMN 5 There are 1 anomalies present There are 1 point(s) with a deviation > 5.0% from the average DATA COLUMN 6 There are 1 anomalies present There are 1 point(s) with a deviation > 5.0% from the average ``` #### DISTRIBUTION LIST MicroVAX/Bus Communication Testing Software for the Low Speed Wind Tunnel Data Acquisition System Craig D. Edwards #### **AUSTRALIA** #### **DEFENCE ORGANISATION** #### **Task Sponsor** ## S&T Program Chief Defence Scientist **FAS Science Policy** shared copy AS Science Corporate Management Director General Science Policy Development Counsellor Defence Science, London (Doc Data Sheet) Counsellor Defence Science, Washington (Doc Data Sheet) Scientific Adviser to MRDC Thailand (Doc Data Sheet) Scientific Adviser Policy and Command Navy Scientific Adviser (Doc Data Sheet and distribution list only) Scientific Adviser - Army (Doc Data Sheet and distribution list only) Air Force Scientific Adviser **Director Trials** ## Aeronautical and Maritime Research Laboratory Director Chief of Air Operations Division N. Pollock N. Matheson (2 copies) Y. Link (2 copies) S. Lam R. Toffoletto P. Malone O. Holland F. Bird M. Spataro S. Kent S. Leung Author: C. Edwards (2 copies) #### **DSTO Library and Archives** Library Fishermens Bend Library Maribyrnong Library Salisbury (2 copies) Australian Archives Library, MOD, Pyrmont (Doc Data sheet only) *US Defense Technical Information Center, 2 copies *UK Defence Research Information Centre, 2 copies *Canada Defence Scientific Information Service, 1 copy *NZ Defence Information Centre, 1 copy National Library of Australia, 1 copy ## Capability Development Division Director General Maritime Development (Doc Data Sheet only) Director General Land Development (Doc Data Sheet only) Director General C3I Development (Doc Data Sheet only) Director General Aerospace Development (Doc Data Sheet only) #### Navy SO (Science), Director of Naval Warfare, Maritime Headquarters Annex, Garden Island, NSW 2000. (Doc Data Sheet only) #### Army ABCA Office, G-1-34, Russell Offices, Canberra (4 copies) SO (Science), DJFHQ(L), MILPO Enoggera, Queensland 4051 (Doc Data Sheet only) NAPOC QWG Engineer NBCD c/- DENGRS-A, HQ Engineer Centre Liverpool Military Area, NSW 2174 (Doc Data Sheet only) ## Intelligence Program DGSTA Defence Intelligence Organisation ## Corporate Support Program OIC TRS, Defence Regional Library, Canberra #### UNIVERSITIES AND COLLEGES Australian Defence Force Academy Library Head of Aerospace and Mechanical Engineering Senior Librarian, Hargrave Library, Monash University Librarian, Flinders University ## OTHER ORGANISATIONS NASA (Canberra) AGPS #### **OUTSIDE AUSTRALIA** ## ABSTRACTING AND INFORMATION ORGANISATIONS INSPEC: Acquisitions Section Institution of Electrical Engineers Library, Chemical Abstracts Reference Service Engineering Societies Library, US Materials Information, Cambridge Scientific Abstracts, US Documents Librarian, The Center for Research Libraries, US ## INFORMATION EXCHANGE AGREEMENT PARTNERS Acquisitions Unit, Science Reference and Information Service, UK Library - Exchange Desk, National Institute of Standards and Technology, US SPARES (5 copies) Total number of copies: 58 Page classification: UNCLASSIFIED | DEFENCE SCIENC | E AN | D TECHNOLOG | | | | | | | |---|--|-----------------|----------------------|--|--------------------------------------
---------------------------------------|-------------------------------|--| | DOCUMENT CONTROL DATA | | | | | PRIVACY MARKING/CAVEAT (OF DOCUMENT) | | | | | 2. TITLE | | | | 3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS | | | | | | MicroVAX/Bus Communication Testing Software for the Low
Speed Wind Tunnel Data Acquisition System | | | | THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT CLASSIFICATION) Document (U) Title (U) Abstract (U) | | | | | | 4. AUTHOR(S) | | | | 5. CORPORATE AUTHOR | | | | | | Craig D. Edwards | Aeronautical and Maritime Research Laboratory
PO Box 4331
Melbourne Vic 3001 Australia | | | | | | | | | 6a. DSTO NUMBER | | | | 6c. TYPE OF REPORT | | 7. DOCUMENT DATE | | | | DSTO-TN-0189 | N-0189 AR-010-843 | | | Technical N | ote | Febri | uary 1999 | | | 8. FILE NUMBER
M1/9/578 | 9. TA
A702 | SK NUMBER
57 | 10. TASK SPO
DSTO | ONSOR | 11. NO. OF PAGES
30 | <u> </u> | 12. NO. OF
REFERENCES
0 | | | 13. DOWNGRADING/DELIMITING INSTRUCTIONS 14. RELEASE AUTHORITY | | | | | | | | | | Chief, Air Operations Division | | | | | | | | | | 15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT | | | | | | | | | | Approved for public release | | | | | | | | | | OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE CENTRE, DIS NETWORK OFFICE,
DEPT OF DEFENCE, CAMPBELL PARK OFFICES, CANBERRA ACT 2600 | | | | | | | | | | 16. DELIBERATE ANNOUN | CEMEN | VT | | | | | | | | No Limitations | | | | | | | | | | 17. CASUAL ANNOUNCEN | /ENT | | Yes | | | · · · · · · · · · · · · · · · · · · · | | | | 18. DEFTEST DESCRIPTORS | | | <u> </u> | | | | | | | Low speed wind tunnels, Data acquisition, Wind tunnel tests, Vax computers, Computer buses | | | | | | | | | | 19. ABSTRACT | | | | | | | | | | Software has been developed to test the communication between the MicroVAX computer and the bi- | | | | | | | | | | directional parallel data bus in the Low Speed Wind Tunnel (LSWT) data acquisition system. It enables | | | | | | | | | Page classification: UNCLASSIFIED software and presents results of tests performed on the existing data acquisition configuration. reading any combination of data parameters from the bus for a user-defined number of iterations. An output file is created which contains the final values, average bus communication times associated with the read process and a statistical analysis of the recorded data. This report describes the operation of the